Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1366197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601156

RESUMO

Introduction: Chemotherapy remains the mainstay treatment for triple-negative breast cancer (TNBC) due to the lack of specific targets. Given a modest response of immune checkpoint inhibitors in TNBC patients, improving immunotherapy is an urgent and crucial task in this field. CD73 has emerged as a novel immunotherapeutic target, given its elevated expression on tumor, stromal, and specific immune cells, and its established role in inhibiting anti-cancer immunity. CD73-generated adenosine suppresses immunity by attenuating tumor-infiltrating T- and NK-cell activation, while amplifying regulatory T cell activation. Chemotherapy often leads to increased CD73 expression and activity, further suppressing anti-tumor immunity. While debulking the tumor mass, chemotherapy also enriches heterogenous cancer stem cells (CSC), potentially leading to tumor relapse. Therefore, drugs targeting both CD73, and CSCs hold promise for enhancing chemotherapy efficacy, overcoming treatment resistance, and improving clinical outcomes. However, safe and effective inhibitors of CD73 have not been developed as of now. Methods: We used in silico docking to screen compounds that may be repurposed for inhibiting CD73. The efficacy of these compounds was investigated through flow cytometry, RT-qPCR, CD73 activity, cell viability, tumorsphere formation, and other in vitro functional assays. For assessment of clinical translatability, TNBC patient-derived xenograft organotypic cultures were utilized. We also employed the ovalbumin-expressing AT3 TNBC mouse model to evaluate tumor-specific lymphocyte responses. Results: We identified quercetin and luteolin, currently used as over-the-counter supplements, to have high in silico complementarity with CD73. When quercetin and luteolin were combined with the chemotherapeutic paclitaxel in a triple-drug regimen, we found an effective downregulation in paclitaxel-enhanced CD73 and CSC-promoting pathways YAP and Wnt. We found that CD73 expression was required for the maintenance of CD44highCD24low CSCs, and co-targeting CD73, YAP, and Wnt effectively suppressed the growth of human TNBC cell lines and patient-derived xenograft organotypic cultures. Furthermore, triple-drug combination inhibited paclitaxel-enriched CSCs and simultaneously improved lymphocyte infiltration in syngeneic TNBC mouse tumors. Discussion: Conclusively, our findings elucidate the significance of CSCs in impairing anti-tumor immunity. The high efficacy of our triple-drug regimen in clinically relevant platforms not only underscores the importance for further mechanistic investigations but also paves the way for potential development of new, safe, and cost-effective therapeutic strategies for TNBC.


Assuntos
Antígeno CD47 , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Flavonoides/farmacologia , Luteolina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Paclitaxel/uso terapêutico , Quercetina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Antígeno CD47/antagonistas & inibidores
2.
Sci Total Environ ; 919: 170699, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325474

RESUMO

During feeding process in intensive chicken farms, the prolonged exposure of chickens to elevated level of ammonia leads to substantial economic losses within poultry farming industry. Luteolin (Lut), known as its anti-inflammatory and antioxidant properties, possesses the ability to eliminate free radicals and enhance the activities of antioxidant enzymes, thus rendering it highly esteemed in production. The objective of this study was to examine the effects of Lut on antioxidant and anti-inflammatory responses of chicken splenic lymphocytes exposed to ammonia. In order to achieve this, we have replicated a protective model involving Lut against ammonia exposure in chicken splenic lymphocytes. The findings of the study indicated that Lut mitigated the elevation of lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) induced by ammonia poisoning. Additionally, Lut demonstrated an increase in the expression of antioxidant enzymes, namely superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Furthermore, Lut exhibited a protective effect on cell morphology and ultrastructure following exposure to ammonia. Moreover, Lut exhibited a reduction in the expression of heat shock proteins (HSPs) and inflammatory cytokines, which were found to be highly expressed in splenic lymphocytes after ammonia exposure. Additionally, Lut demonstrated the ability to inhibit the overexpression of pyroptosis-related genes and proteins (NLRP3 and Caspase-1) in splenic lymphocytes following ammonia exposure. Lut exerted an antioxidant effect on lymphocytes, counteracting elevated levels of oxidative stress following exposure to ammonia. Additionally, Lut had the potential to modulate the expression of HSPs, suppressed the inflammatory response subsequent to ammonia exposure, and influenced the expression of NLRP3 and Caspase-1, thereby mitigating pyroptosis induced by ammonia exposure. The exploration of this subject matter can elucidate the protective properties of Lut against NH4Cl-induced damage in chicken splenic lymphocytes, while also offer insights and experimental groundwork for the utilization of natural therapeutics in animal husbandry to prevent and treat ammonia-related conditions.


Assuntos
Antioxidantes , NF-kappa B , Animais , Antioxidantes/metabolismo , Caspase 1/metabolismo , Caspase 1/farmacologia , Piroptose , Luteolina/metabolismo , Luteolina/farmacologia , Amônia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Galinhas/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/metabolismo , Linfócitos
3.
Chem Biol Drug Des ; 103(1): e14356, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731180

RESUMO

Both luteolin and magnoflorine have been reported to regulate the development of breast cancer, which makes them easier to co-administrate. Luteolin was co-administrated with magnoflorine to evaluate their potential interaction. The pharmacokinetic study was performed on male Sprague-Dawley rats randomly grouped as the single administration of luteolin and the co-administration of luteolin and magnoflorine with six rats of each. CaCO-2 cell transwell assay was employed for transport evaluation, and the metabolic stability of luteolin and CYP3A activity were assessed in rat liver microsomes. The effect of luteolin on MDA-MB-231 cells was assessed with CCK8 assay. Magnoflorine significantly changed the pharmacokinetic profile of luteolin with increased area under the curve (AUC), prolonged t1/2 , and reduced clearance rate. Magnoflorine also suppressed the efflux ratio and improved the in vitro metabolic stability of luteolin. Magnoflorine also enhanced the inhibitory effect of luteolin on MDA-MB-231 cells. Magnoflorine significantly inhibited CYP3A activity with the IC50 of 18.99 µM. Magnoflorine prolonged the system exposure, enhanced the metabolic stability, and enhanced the anti-tumor effect of luteolin through inactivating CYP3A.


Assuntos
Aporfinas , Citocromo P-450 CYP3A , Luteolina , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Luteolina/farmacologia , Luteolina/metabolismo , Citocromo P-450 CYP3A/metabolismo , Células CACO-2 , Microssomos Hepáticos/metabolismo , Interações Medicamentosas
4.
Placenta ; 145: 65-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096686

RESUMO

INTRODUCTION: Preeclampsia (PE) is a serious hypertensive pregnancy disorder and a leading cause of maternal and perinatal morbidity and mortality. Despite the prevalence and complications, there are no approved therapeutics to relieve PE symptoms. Inflammation, oxidative stress, and angiogenic imbalance have been shown to contribute to the PE pathophysiology, though there is a lack of understanding in how best to target these pathways in PE. We recently demonstrated that the bioflavonoid luteolin is a potent inhibitor of the anti-angiogenic and pro-hypertensive soluble fms-like tyrosine kinase 1 (sFlt-1), and here we aimed to determine if luteolin was also capable of reducing inflammation and oxidative stress pathways. METHODS: Tumor necrosis factor (TNF)-α, which is upregulated in PE, was utilized to stimulate these pathways in human placental explants and endothelial cells. Endothelin-1 (ET-1) and interleukin (IL)-6 in the media from explants and cells were measured via ELISA, and NF-κB localization and reactive oxygen species were detected via fluorescence microscopy. RESULTS: Pretreatment with luteolin demonstrated significant reductions in NF-κB activation, reactive oxygen species, superoxide, and IL-6 and ET-1 expression in endothelial cells. We also saw a significant reduction in phosphorylation of NF-κB in human placental explants. DISCUSSION: These data demonstrate that luteolin inhibits pathways implicated in the development of PE and should be explored further for its potential as a PE therapeutic.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , NF-kappa B/metabolismo , Placenta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Luteolina/farmacologia , Luteolina/metabolismo , Células Endoteliais/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Inflamação/metabolismo
5.
Anal Cell Pathol (Amst) ; 2023: 4500810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077523

RESUMO

Background: In the present study, we aimed to find out whether luteolin (Lut) pretreatment could ameliorate myocardial ischemia/reperfusion (I/R) injury by regulating the lncRNA just proximal to XIST (JPX)/microRNA-146b (miR-146b) axis. Methods: We established the models in vitro (HL-1 cells) and in vivo (C57BL/6J mice) to certify the protection mechanism of Lut pretreatment on myocardial I/R injury. Dual luciferase reporter gene assay was utilized for validating that JPX could bind to miR-146b. JPX and miR-146b expression levels were determined by RT-qPCR. Western blot was utilized to examine apoptosis-related protein expression levels, including cleaved caspase-9, caspase-9, cleaved caspase-3, caspase-3, Bcl-2, Bax, and BAG-1. Apoptosis was analyzed by Annexin V-APC/7-AAD dualstaining, Hoechst 33342 staining, as well as flow cytometry. Animal echocardiography was used to measure cardiac function (ejection fraction (EF) and fractional shortening (FS) indicators). Results: miR-146b was demonstrated to bind and recognize the JPX sequence site by dual luciferase reporter gene assay. The expression level of miR-146b was corroborated to be enhanced by H/R using RT-qPCR (P < 0.001 vs. Con). Moreover, JPX could reduce the expression of miR-146b, whereas inhibiting JPX could reverse the alteration (P < 0.001 vs. H/R, respectively). Western blot analysis demonstrated that Lut pretreatment increased BAG-1 expression level and Bcl-2/Bax ratio, but diminished the ratio of cleaved caspase 9/caspase 9 and cleaved caspase 3/caspase 3 (P < 0.001 vs. H/R, respectively). Moreover, the cell apoptosis change trend, measured by Annexin V-APC/7-AAD dualstaining, Hoechst 33342 staining, along with flow cytometry, was consistent with that of apoptosis-related proteins. Furthermore, pretreatment with Lut improved cardiac function (EF and FS) (P < 0.001 vs. I/R, respectively), as indicated in animal echocardiography. Conclusion: Our results demonstrated that in vitro and in vivo, Lut pretreatment inhibited apoptosis via the JPX/miR-146b axis, ultimately improving myocardial I/R injury.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Luteolina/farmacologia , Luteolina/uso terapêutico , Luteolina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína X Associada a bcl-2/metabolismo , Anexina A5/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Luciferases/metabolismo , Apoptose/genética
6.
J Agric Food Chem ; 71(46): 17842-17851, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37941337

RESUMO

Glycosylation can enhance the solubility and stability of flavonoids. The main limitation of the glycosylation process is low intracellular uridine diphosphate glucose (UDPG) availability. This study aimed to create a glycosylation platform strain in Escherichia coli BL21(DE3) by multiple metabolic engineering of the UDPG supply. Glycosyltransferase TcCGT1 was introduced to synthesize vitexin and orientin from apigenin and luteolin, respectively. To further expand this glycosylation platform strain, not only were UDP rhamnose and UDP galactose synthesis pathways constructed, but rhamnosyltransferase (GtfC) and galactosyltransferase (PhUGT) were also introduced, respectively. In a 5 L bioreactor with apigenin, luteolin, kaempferol, and quercetin as glycosyl acceptors, vitexin, orientin, afzelin, quercitrin, hyperoside, and trifolin glycosylation products reached 17.2, 36.5, 5.2, 14.1, 6.4, and 11.4 g/L, respectively, the highest titers reported to date for all. The platform strain has great potential for large-scale production of glycosylated flavonoids.


Assuntos
Apigenina , Uridina Difosfato Glucose , Glicosilação , Uridina Difosfato Glucose/metabolismo , Apigenina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Luteolina/metabolismo , Flavonoides/metabolismo
7.
Poult Sci ; 102(12): 103093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783192

RESUMO

Ammonia poses a significant challenge in the contemporary intensive breeding industry, resulting in substantial economic losses. Despite this, there is a dearth of research investigating efficacious strategies to prevent ammonia poisoning in poultry. Consequently, the objective of this study was to investigate the molecular mechanisms through which Luteolin (Lut) safeguards mitochondria and restores equilibrium to energy metabolism disorders, thereby shielding chicken spleen lymphocytes from the detrimental effects of ammonia poisoning. Chicken spleen lymphocytes were categorized into 3 distinct groups: the control group, the ammonia group (with the addition of 1 mmol/L of ammonium chloride), and the Lut group (with the treatment of 0.5 µg/mL of Lut for 12 h followed by the addition of 1 mmol/L of ammonium chloride). These groups were then cultured for a duration of 24 h. To investigate the potential protective effect of Lut on lymphocytes exposed to ammonia, various techniques were employed, including CCK-8 analysis, ultrastructural observation, reagent kit methodology, fluorescence microscopy, and quantitative real-time PCR (qRT-PCR). The findings indicate that Lut has the potential to mitigate the morphological damage of mitochondria caused by ammonia poisoning. Additionally, it can counteract the decline in mitochondrial membrane potential, ATP content, and ATPase activities (specifically Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca/Mg2+-ATPase) following exposure to ammonia in lymphocytes. Lut also has the ability to regulate the expression of genes involved in mitochondrial fusion (Opa1, Mfn1, and Mfn2) and division (Drp1 and Mff) in spleen lymphocytes after ammonia exposure. This regulation leads to a balanced energy metabolism (HK1, HK2, LDHA, LDHB, PFK, PK, SDHB, and ACO2) and provides protection against ammonia poisoning.


Assuntos
Galinhas , Baço , Animais , Baço/metabolismo , Galinhas/metabolismo , Amônia/metabolismo , Luteolina/metabolismo , Luteolina/farmacologia , Cloreto de Amônio/metabolismo , Cloreto de Amônio/farmacologia , Metabolismo Energético , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Mitocôndrias/metabolismo , Linfócitos/metabolismo
8.
Chemosphere ; 337: 139365, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392791

RESUMO

Luteolin continuous-release microsphere (CRM) has promising algicidal effect against Microcystis, but how nitrogen (N) level impacted CRM effects on Microcystis growth and microcystins (MCs) pollution was never tracked along long term. This study revealed that luteolin CRM exerted long-term and robust inhibitory effects on Microcystis growth and MC-pollution by sharply decreasing extracellular and total MCs content at each N level, with growth inhibition ratio of 88.18%-96.03%, 92.91%-97.17% and 91.36%-95.55% at 0.5, 5 and 50 mg/L N, respectively, during day 8-30. Further analyses revealed that CRM-stress inhibited transferase, GTPase and ATPase activities, ATP binding, metal ion binding, fatty acid biosynthesis, transmembrane transport and disrupted redox homeostasis to pose equally robust algicidal effect at each N level. At lower N level, CRM-stress tended to induce cellular metabolic mode towards stronger energy supply/acquisition but weaker energy production/consumption, while triggered a shift towards stronger energy production/storage but weaker energy acquisition/consumption as N level elevated, thus disturbing metabolic balance and strongly inhibiting Microcystis growth at each N level. Long-term robust algicidal effect of CRM against other common cyanobacteria besides Microcystis was evident in natural water. This study shed novel insights into inhibitory effects and mechanisms of luteolin CRM on Microcystis growth and MC-pollution in different N-level waters.


Assuntos
Microcystis , Microcystis/metabolismo , Luteolina/metabolismo , Luteolina/farmacologia , Microcistinas/análise , Nitrogênio/metabolismo , Proteômica , Microesferas , Expressão Gênica
9.
FASEB J ; 37(8): e23078, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37405762

RESUMO

Preeclampsia (PE) is a serious hypertensive complication of pregnancy and is a leading cause of maternal death and major contributor to maternal and perinatal morbidity, including establishment of long-term complications. The continued prevalence of PE stresses the need for identification of novel treatments which can target prohypertensive factors implicated in the disease pathophysiology, such as soluble fms-like tyrosine kinase 1 (sFlt-1). We set out to identify novel compounds to reduce placental sFlt-1 and determine whether this occurs via hypoxia-inducible factor (HIF)-1α inhibition. We utilized a commercially available library of natural compounds to assess their ability to reduce sFlt-1 release from primary human placental cytotrophoblast cells (CTBs). Human placental explants from normotensive (NT) and preeclamptic (PE) pregnancies were treated with varying concentrations of luteolin. Protein and mRNA expression of sFlt-1 and upstream mediators were evaluated using ELISA, western blot, and real-time PCR. Of the natural compounds examined, luteolin showed the most potent inhibition of sFlt-1 release, with >95% reduction compared to vehicle-treated. Luteolin significantly inhibited sFlt-1 in cultured placental explants compared to vehicle-treated in a dose- and time-dependent manner. Additionally, significant decreases in HIF-1α expression were observed in luteolin-treated explants, suggesting a mechanism for sFlt-1 downregulation. The ability of luteolin to inhibit HIF-1α may be mediated through the Akt pathway, as inhibitors to Akt and its upstream regulator phosphatidylinositol-3 kinase (PI3K) resulted in significant HIF-1α reduction. Luteolin reduces anti-angiogenic sFlt-1 through inhibition of HIF-1α, making it a novel candidate for the treatment of PE.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Placenta/metabolismo , Luteolina/farmacologia , Luteolina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trofoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Pré-Eclâmpsia/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
World J Gastroenterol ; 29(18): 2818-2835, 2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37274067

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is the main pathogen that causes a variety of upper digestive diseases. The drug resistance rate of H. pylori is increasingly higher, and the eradication rate is increasingly lower. The antimicrobial resistance of H. pylori is an urgent global problem. It has been confirmed that Banxia Xiexin decoction (BXXXT) demonstrates the effects of treating gastrointestinal diseases, inhibiting H. pylori and protecting gastric mucosa. The purpose of the present study is to further explore the therapeutic effects of BXXXT on drug-resistant H. pylori. AIM: To confirm that BXXXT demonstrates therapeutical effects in vivo and in vitro on gastritis mice with drug-resistant H. pylori and explain its mechanism to provide an experimental basis for promoting the application of BXXXT. METHODS: The aqueous extract of BXXXT was gained by water decocting method. The inhibitory effect of the aqueous extract on H. pylori was detected by dilution in vitro; drug-resistant H. pylori cells were used to build an acute gastritis model in vivo. Thereafter, the model mice were treated with the aqueous extract of BXXXT. The amount of H. pylori colonization, the repair of gastric mucosal damage, changes of inflammatory factors, apoptosis, etc., were assessed. In terms of mechanism exploration, the main medicinal compositions of BXXXT aqueous extract and the synergistic bacteriostatic effects they had demonstrated were analyzed using mass spectrometry; the immune function of peripheral blood cells such as CD3+ T and CD4+ T of mice with gastritis before and after treatment with BXXXT aqueous extract was detected using a flow cytometry; the H. pylori transcriptome and proteome after treatment with BXXXT aqueous extract were detected. Differently expressed genes were screened and verification was performed thereon with knockout expression. RESULTS: The minimum inhibitory concentration of BXXXT aqueous extract against H. pylori was 256-512 µg/mL. A dose of 28 mg/kg BXXXT aqueous extract treatment produced better therapeutical effects than the standard triple therapy did; the BXXXT aqueous extract have at least 11 ingredients inhibiting H. pylori, including berberine, quercetin, baicalin, luteolin, gallic acid, rosmarinic acid, aloe emodin, etc., of which berberine, aloe emodin, luteolin and gallic acid have a synergistic effect; BXXXT aqueous extract was found to stimulate the expressions of CD3+ T and CD4+ T and increase the number of CD4+ T/CD8+ T in gastritis mice; the detection of transcriptome and proteome, quantitative polymerase chain reaction, Western blotting and knockout verification revealed that the main targets of BXXXT aqueous extract are CFAs related to urea enzymes, and CagA, VacA, etc. CONCLUSION: BXXXT aqueous extract could demonstrate good therapeutic effects on drug-resistance H. pylori in vitro and in vivo and its mechanism comes down to the synergistic or additional antibacterial effects of berberine, emodin and luteolin, the main components of the extract; the extract could activate the immune function and enhance bactericidal effects; BXXXT aqueous extract, with main targets of BXXXT aqueous extract related to urease, virulence factors, etc., could reduce the urease and virulence of H. pylori, weaken its colonization, and reduce its inflammatory damage to the gastric mucosa.


Assuntos
Berberina , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Camundongos , Animais , Urease/metabolismo , Berberina/farmacologia , Luteolina/metabolismo , Luteolina/farmacologia , Luteolina/uso terapêutico , Proteoma/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Proteínas de Bactérias/genética
11.
J Agric Food Chem ; 71(25): 9908-9921, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337977

RESUMO

Protein-flavonoid conjugation is considered to effectively enhance the functionality of proteins, although how different binding modes affect the conformation and antioxidative properties of these conjugates has yet to be revealed. Herein, myofibrillar protein (MP)-luteolin (Lut) conjugates were noncovalently and covalently constructed using equivalent amounts of Lut (10.00, 20.11, and 69.60 µmol/g protein). Fluorescence quenching confirmed that hydrophobic interactions were the main forces in noncovalent MP-Lut conjugates and that the binding was entropy-driven. Liquid chromatography-tandem mass spectrometry results confirmed that Lut could be covalently grafted with MP after alkaline treatment. Proteomics analysis identified that most graft sites were located on the myosin subunits. Intriguingly, in vitro results showed that the antioxidant activity was barely affected by the MP-Lut binding modes. This work provides a theoretical basis for the application of MP-Lut noncovalent/covalent complexes as functional components.


Assuntos
Antioxidantes , Luteolina , Luteolina/metabolismo , Ligação Proteica , Antioxidantes/metabolismo , Cromatografia Líquida
12.
J Sci Food Agric ; 103(13): 6440-6451, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37209398

RESUMO

BACKGROUND: Chinese yam fermented by Monascus, namely red mold dioscorea (RMD), has the potential of treating diseases. However, the production of citrinin limits the application of RMD. In the present study, the fermentation process of Monascus was optimized by adding genistein or luteolin to reduce citrinin yield. RESULTS: The results showed that citrinin in 25 g of Huai Shan yam was reduced by 48% and 72% without affecting the pigment yield by adding 0.2 g of luteolin or genistein, respectively, to a 250-mL conical flask after fermentation for 18 days at 28 °C, whereas the addition of luteolin increased the content of yellow pigment by 1.3-fold. Under optimal conditions, citrinin in 20 g of iron bar yam decreased by 55% and 74% after adding 0.2 g of luteolin or genistein. Luteolin also increased yellow pigment content by 1.2-fold. Ultra HPLC coupled to quadrupole time-of-flight mass spectrometry was used for the preliminary analysis of Monascus fermentation products. It was found that the amino acid types in RMD are similar to those in yams, but there are fewer polysaccharides and fatty acids. CONCLUSION: The results obtained in the present study showed that the addition of genistein or luteolin could reduce citrinin on the premise of increasing pigment yield, which laid a foundation for the better use of yams in Monascus fermentation. © 2023 Society of Chemical Industry.


Assuntos
Citrinina , Dioscorea , Monascus , Fermentação , Citrinina/análise , Dioscorea/metabolismo , Genisteína/metabolismo , Monascus/metabolismo , Luteolina/metabolismo , Pigmentos Biológicos/metabolismo
13.
BMC Plant Biol ; 23(1): 186, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032332

RESUMO

BACKGROUND: Safflower (Carthamus tinctorius L.) is an important economic crop and a traditional medicinal material rich in flavonoids, which can alleviate cardiovascular and cerebrovascular pathologies. Thus, many candidate genes involved in safflower flavonoid biosynthesis have been cloned. However, owing to the lack of a homologous gene expression system, research on gene function is limited to model plants. Therefore, a gene function identification protocol for safflower must be established. RESULTS: In the present study, using safflower callus as the experimental material, Agrobacterium and biolistic transient expression systems were established. In the Agrobacterium transient expression system, the highest transformation rate was obtained at the original Agrobacterium concentration of OD600 0.4, infiltration concentration of OD600 0.6, infection for 20 min, co-culture for 3 days, and acetosyringone concentration of 100 µmol·L-1. In the biolistic transient expression system, the highest transformation efficiency was observed at helium pressure of 1,350 psi, vacuum degree of -0.8 bar, flight distance of 6.5 cm, one round of bombardment, plasmid concentration of 3 µg·shot-1, and gold particle concentration of 100 µg·shot-1. Further, these two transient expression systems were used for the functional analysis of CtCHS1 as an example. After overexpression, relative CtCHS1 expression increased, particularly in Agrobacterium-transformed calli. Additionally, the contents of some flavonoids were altered; for instance, naringenin and genistein levels were significantly increased in Agrobacterium-transformed calli, whereas luteolin, luteolin-7-O-rutinoside, and apigenin derivative levels were significantly decreased in biolistic-transformed calli. CONCLUSION: Using safflower callus as the experimental material, highly efficient Agrobacterium and biolistic transient expression systems were successfully established, and the utility of both systems for investigating gene function was demonstrated. The proposed safflower callus transient expression systems will be useful for further functional analyses of flavonoid biosynthetic genes in safflower.


Assuntos
Carthamus tinctorius , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Luteolina/metabolismo , Fenótipo , Agrobacterium/genética
15.
Mol Nutr Food Res ; 67(7): e2200478, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36760156

RESUMO

SCOPE: Serotonin (5-HT)-induced visceral adipocyte lipolysis is essential for the development of obesity-related complications. Diet supplementation of luteolin prevents high-fat diet (HFD)-fed mice against obesity and associated fatty liver. However, independent of the body weight loss, whether dietary luteolin can substantially reduce hepatic steatosis remains unclear. METHODS AND RESULTS: In differentiated 3T3-L1 cells, 5-HT treatment promotes adipocyte lipolysis, while luteolin significantly inhibits 5-HT-induced lipolysis, Ca2+ -PKG cascade, and SIRT1/FoxO1/AMPKα signaling through binding to 5-HT receptor HTR2B. Further, 5-week-old mice are fed with an HFD for 16 weeks. At the 6th, 8th, or 10th weeks of HFD feeding, some mice are switched to a luteolin-containing HFD, respectively. In all HFD-fed mice, body weight gain and body component are unaffected by dietary luteolin. However, diet supplementation of luteolin at the 6th or 8th, rather than at the 10th weeks, alleviates hepatic steatosis. Meanwhile, dietary luteolin reduces epididymal adipose tissue (EAT) lipolysis, and represses the level of lipolytic enzyme, the expression of Htr2b, and the activation of PKG and SIRT1/FoxO1/AMPKα signaling in EAT. CONCLUSIONS: Diet supplementation of luteolin before the formation of fatty liver protects HFD-fed mice against ectopic lipid deposition in liver by inhibiting visceral adipocyte lipolysis.


Assuntos
Fígado Gorduroso , Lipólise , Camundongos , Animais , Luteolina/farmacologia , Luteolina/metabolismo , Camundongos Obesos , Sirtuína 1/metabolismo , Gordura Intra-Abdominal/metabolismo , Serotonina/metabolismo , Fígado/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Camundongos Endogâmicos C57BL
16.
Appl Microbiol Biotechnol ; 107(5-6): 1663-1672, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719434

RESUMO

O-Methylation catalyzed by O-methyltransferases (OMTs) is an important modification of flavonoids for improving the transport efficiency across membranes and metabolic stability in mammalian cells. Chrysoeriol, also known as 3'-O-methylated luteolin, is a methylated flavonoid compound with health-promoting activities. The generation of chrysoeriol from luteolin can be catalyzed by a rice-derived 3'-OMT named ROMT-9, which has a high regiospecificity and activity toward flavonoids in vitro. Herein, we explored the potential of ROMT-9 for in vivo biosynthesis of chrysoeriol in Escherichia coli and adopted semi-rational enzyme engineering guided by homology modeling and molecular docking to improve the bio-production. Two positive variants including L34Q and W284A were obtained which promoted chrysoeriol formation to more than 85 mg/L from 200 mg/L of luteolin in 24 h compared with a titer of 55 mg/L for the strain expressing the native enzyme. Further biochemical analysis confirmed that such improvement in production stemmed from a higher enzyme expression level for the L34Q variant and higher efficiency in substrate binding and catalysis for the W284A variant. This study provides some insights into the engineering of other flavonoid OMTs and will facilitate high-level biosynthesis of methylated flavonoids in engineered microorganisms. KEY POINTS: • Biosynthesis of chrysoeriol from luteolin in E. coli using ROMT-9 • Engineering of ROMT-9 for better bio-production • ROMT-9 variants promote production via better expression or better catalysis.


Assuntos
Flavonoides , Metiltransferases , Animais , Flavonoides/metabolismo , Metiltransferases/metabolismo , Escherichia coli/metabolismo , Luteolina/metabolismo , Simulação de Acoplamento Molecular , Mamíferos/metabolismo
17.
Mol Nutr Food Res ; 67(6): e2200729, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708177

RESUMO

SCOPE: Although sarcopenia is mainly caused by aging, sarcopenia due to obesity has become an emerging issue given the increase in obesity among people of various ages. There are studies on obesity or sarcopenia, our understanding of obesity-mediated sarcopenia is insufficient. Luteolin (LU) has exhibited antiobesity effects, but no studies have investigated the LU effects on antisarcopenia. This study therefore investigated the effects of LU on obese sarcopenia in mice with high-fat diet (HFD)-induced obesity. METHODS AND RESULTS: To evaluate its inhibitory efficacy against obese sarcopenia, 5-week-old mice are fed an HFD supplemented with LU for 20 weeks. LU exerts suppressive effects on obesity, inflammation, and protein degradation in the HFD-fed obese mice. It also inhibits lipid infiltration into the muscle and decreases p38 activity and the mRNA expression of inflammatory factors, including TNF-α, Tlr2, Tlr4, MCP1, and MMP2, in the muscle. The suppression of muscle inflammation by LU leads to the inhibition of myostatin, FoxO, atrogin, and MuRF expression. These effects of LU affect inhibition of protein degradation and improvement of muscle function. CONCLUSION: Here, it demonstrates that LU's antiobesity and antiinflammatory functionality affect inhibition of muscle protein degradation, and consequently, these interactions by LU exerts a protective effect against obese sarcopenia.


Assuntos
Resistência à Insulina , Sarcopenia , Animais , Camundongos , Sarcopenia/tratamento farmacológico , Sarcopenia/etiologia , Sarcopenia/prevenção & controle , Luteolina/farmacologia , Luteolina/metabolismo , Proteólise , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos
18.
Metab Brain Dis ; 38(2): 437-452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35316449

RESUMO

The reactive dicarbonyl methylglyoxal (MG) behaves as a pro-oxidant agent, causing redox dysfunction and cell death by different mechanisms in mammalian cells. MG is also a mitochondrial toxicant, impairing the oxidative phosphorylation (OXPHOS) system and leading to bioenergetics and redox collapses. MG induces glycation and exerts an important role in neurodegenerative and cardiovascular diseases. Isoorientin (ISO), a C-glucosyl flavone found in Aspalathus linearis, Fagopyrum esculentum, and Passiflora edulis, among others, is an antioxidant and anti-inflammatory molecule. ISO is a potent inducer of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master modulator of the redox environment in mammals. We investigated here whether ISO would prevent the mitochondria-related redox and bioenergetics impairments induced by MG in the human neuroblastoma SH-SY5Y cells. The cells were administrated with ISO at 20 µM for 18 h prior to the exposure to MG at 500 µM for further 24 h. It was observed that ISO efficiently prevented the mitochondrial impairments caused by MG. ISO upregulated the activity of the enzyme γ-glutamate-cysteine ligase (γ-GCL), consequently stimulating the synthesis of glutathione (GSH). The inhibition of γ-GCL, adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase/Akt (PI3K/Akt) suppressed the beneficial effects induced by ISO on the MG-challenged cells. Moreover, silencing of Nrf2 blocked the ISO-dependent γ-GCL and GSH upregulation and the effects on the mitochondria of the MG-challenged cells. Then, ISO caused mitochondrial protection by an AMPK-PI3K/Akt/Nrf2/γ-GCL/GSH-dependent manner in MG-administrated SH-SY5Y cells.


Assuntos
Neuroblastoma , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/farmacologia , Aldeído Pirúvico/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Neuroblastoma/metabolismo , Glutationa/metabolismo , Luteolina/farmacologia , Luteolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Mamíferos/metabolismo
19.
EBioMedicine ; 87: 104406, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36527899

RESUMO

BACKGROUND: Stroke is one of the most common neurological diseases in the world and is clinically manifested by transient or permanent brain dysfunction. It has a high mortality and disability rate, which severely affects people's health and diminishes the quality of life. However, there is no efficient treatment that can be considered curative and there are other less well-known theories of pathogenesis. Therefore, it is imperative to gain a full understanding of the pathophysiology of ischemia and to seek new therapeutic strategies. METHODS: We first examined Kir4.1 channel and myelin based protein (MBP) expression in brain tissues from acute ischemic patients by Western blotting. We then established a transient ischemic mouse model (tMCAO) to conduct molecular, cell biological, transmission electron microscopy and pharmacokinetic studies, as well as in Kir4.1 cKO mice. Finally, neuroimaging and behavioral analyses were used to examine whether activation of Kir4.1 channel by luteolin could contribute to neuronal functional recovery in ischemic stroke. FINDINGS: In acute ischemic stroke patients, we first demonstrated that Kir4.1 ion channels were greatly impaired and a severe demyelination of axons occurred in ischemic infarction area of cerebral cortex in these patients. Further evidence showed that the deficits of Kir4.1 channels in NG2 glia led to the myelin loss of axons in a transient ischemic mouse model (tMCAO). Treating ischemic mice with a natural botanical extract, luteolin augmented Kir4.1 channel currents in NG2 glia and consequently promoted remyelination of axons, alleviated the infarction area and ultimately improved motor function in a series of behavioral tests. INTERPRETATION: Targeting Kir4.1 ion channels expressed in NG2 glial cells by luteolin treatment highlights an effective therapeutic strategy for a prompt brain functional recovery in ischemic stroke. FUNDING: This work was supported by grants from the Ministry of Science and Technology China Brain Initiative (2022ZD0204702, to X.T.), the National Natural Science Foundation of China (82271466, 82171279, 31970904 and 31571063), the Program for Professor of Special Appointment (Eastern Scholar for Dr. X.T.) at Shanghai Institutions for Higher Learning (1510000084), Shanghai Pujiang Talent Award (15PJ1404600), Shanghai Municipal Science and Technology Major Project (2018SHZDZX05) and Shanghai Science and Technology Project (17411954000).


Assuntos
AVC Isquêmico , Remielinização , Acidente Vascular Cerebral , Camundongos , Animais , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/etiologia , AVC Isquêmico/metabolismo , Luteolina/metabolismo , Qualidade de Vida , China , Neuroglia/metabolismo , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/genética , Infarto/metabolismo
20.
Int J Cardiol ; 375: 74-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36513286

RESUMO

BACKGROUND: Ischemia/reperfusion (I/R) is associated with severe cellular damage and death. Ferroptosis, a new form of regulated cell death caused by the accumulation of iron-mediated lipid peroxidation, has been found in several diseases including I/R injury, which was reported to be suppressed by flavonoids. Baicalein (BAI) and luteolin (Lut) are flavonoids and were shown to reduce the myocardial I/R injury. BAI was found to suppress ferroptosis in cancer cells via reducing reactive oxygen species (ROS) generation. However, the anti-ferroptosis effect of Lut on ferroptosis has not been reported. This study aimed to investigate whether ferroptosis reduction contributes to the BAI- and Lut-protected cardiomyocytes. METHODS: This research used erastin, RSL3, and Fe-SP to induce ferroptosis. Cell viability was examined using MTT assay. Annexin V-FITC, CM-H2DCFDA, and Phen Green SK diacetate (PGSK) fluorescent intensity were detected to analyze apoptotsis, ROS levels, and Fe2+ concentrations, respectively. qPCR and Western blot analysis were conducted to detect the levels of mRNA and protein, respectively. RESULTS: Our data show that BAI and Lut protected cardiomyocytes against ferroptosis caused by ferroptosis inducers and I/R. Moreover, both BAI and Lut decreased ROS and malondialdehyde (MDA) generation and the protein levels of ferroptosis markers, and restored Glutathione peroxidase 4 (GPX4) protein levels in cardiomyocytes reduced by ferroptosis inducers. BAI and Lut reduced the I/R-induced myocardium infarction and decreased the levels of Acsl4 and Ptgs2 mRNA. CONCLUSIONS: BAI and Lut could protect the cardiomyocytes against the I/R-induced ferroptosis via suppressing accumulation of ROS and MDA.


Assuntos
Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Luteolina/farmacologia , Luteolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , RNA Mensageiro/metabolismo , Reperfusão , Isquemia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...